On June 15, 1752, Benjamin Franklin may have possibly conducted his famous kite experiment in Philadelphia; successfully extracted sparks from a cloud, although there are theories that suggest he never performed the experiment. Franklin’s experiment was not written up until Joseph Priestley’s 1767 History and Present Status of Electricity; the evidence shows that Franklin was insulated (not in a conducting path, since he would have been in danger of electrocution in the event of a lightning strike). Others, such as Prof. Georg Wilhelm Richmann of Saint Petersburg, Russia, were electrocuted during the months following Franklin’s experiment.
In his writings, Franklin indicates that he was aware of the dangers and offered alternative ways to demonstrate that lightning was electrical, as shown by his use of the concept of electrical ground. If Franklin did perform this experiment, he may not have done it in the way that is often described, flying the kite and waiting to be struck by lightning, as it could have been dangerous. The popular television program MythBusters simulated the alleged “key at the end of a string” Franklin experiment and established with a degree of certainty that, if Franklin had indeed proceeded thus, he would undoubtedly have been killed. Instead he used the kite to collect some electric charge from a storm cloud, which implied that lightning was electrical.
On October 19 in a letter to England explaining directions for repeating the experiment, Franklin wrote:
When rain has wet the kite twine so that it can conduct the electric fire freely, you will find it streams out plentifully from the key at the approach of your knuckle, and with this key a phial, or Leiden jar, maybe charged: and from electric fire thus obtained spirits may be kindled, and all other electric experiments [may be] performed which are usually done by the help of a rubber glass globe or tube; and therefore the sameness of the electrical matter with that of lightening completely demonstrated.
Franklin’s electrical experiments led to his invention of the lightning rod. He noted that conductors with a sharp rather than a smooth point were capable of discharging silently, and at a far greater distance. He surmised that this knowledge could be of use in protecting buildings from lightning by attaching “upright Rods of Iron, made sharp as a Needle and gilt to prevent Rusting, and from the Foot of those Rods a Wire down the outside of the Building into the Ground;…Would not these pointed Rods probably draw the Electrical Fire silently out of a Cloud before it came nigh enough to strike, and thereby secure us from that most sudden and terrible Mischief!” Following a series of experiments on Franklin’s own house, lightning rods were installed on the Academy of Philadelphia (later the University of Pennsylvania) and the Pennsylvania State House (later Independence Hall) in 1752.
In recognition of his work with electricity, Franklin received the Royal Society’s Copley Medal in 1753 and in 1756 he became one of the few 18th- century Americans to be elected as a Fellow of the Society. The cgs unit of electric charge has been named after him: one franklin (Fr) is equal to one statcoulomb.